Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay.

نویسندگان

  • A B Shyu
  • J G Belasco
  • M E Greenberg
چکیده

The mechanisms by which c-fos mRNA is targeted for decay have been examined. Rapid removal of the poly(A) tail occurs before the transcribed portion of the c-fos message is degraded. Identification of the determinants that mediate c-fos message deadenylation reveals that they coincide directly with previously characterized determinants of c-fos mRNA instability, one in the protein-coding region and the other an AU-rich element (ARE) in the 3'-untranslated region. Insertion of either of these c-fos instability elements into the stable beta-globin message confers the property of rapid deadenylation. Mutation of the ARE indicates that this sequence controls two steps in the process of c-fos mRNA degradation: removal of the poly(A) tail, which does not require intact AUUUA pentanucleotides within the ARE, and subsequent degradation of the transcribed portion of the message, which appears to be dependent on the AUUUA pentanucleotides. These results indicate that structurally distinct instability determinants within the transcribed portion of labile messages can function by promoting rapid removal of the poly(A) tail as a first step in the decay process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation.

Poly(A) tail removal is a critical first step in the decay pathway for many yeast and mammalian mRNAs. Poly(A) shortening rates can be regulated by cis-acting sequences within the transcribed portion of mRNA, which in turn control mRNA turnover rates. The AU-rich element (ARE), found in the 3' untranslated regions of many highly labile mammalian mRNAs, is a well-established example of this type...

متن کامل

The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation.

Labile mRNAs that encode cytokine and immediate-early gene products often contain AU-rich sequences within their 3' untranslated region (UTR). These AU-rich sequences appear to be key determinants of the short half-lives of these mRNAs, although the sequence features of these elements and the mechanism by which they target mRNAs for rapid decay have not been fully defined. We have examined the ...

متن کامل

Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway.

Nonsense-mediated mRNA decay (NMD) is an RNA surveillance pathway that detects and destroys aberrant mRNAs containing nonsense or premature termination codons (PTCs) in a translation-dependent manner in eukaryotes. In yeast, the NMD pathway bypasses the deadenylation step and directly targets PTC-containing messages for decapping, followed by 5'-to-3' exonuclease digestion of the RNA body. In m...

متن کامل

Functional characterization of a non-AUUUA AU-rich element from the c-jun proto-oncogene mRNA: evidence for a novel class of AU-rich elements.

AU-rich RNA-destabilizing elements (AREs) found in the 3' untranslated regions of many labile mRNAs encoding proto-oncoproteins and cytokines generally contain (i) one or more copies of the AUUUA pentanucleotide and (ii) a high content of uridylate and sometimes also adenylate residues. Recently, we have identified a potent ARE from the 3' untranslated region of c-jun proto-oncogene mRNA that d...

متن کامل

Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1.

In human cells, a critical pathway in gene regulation subjects mRNAs with AU-rich elements (AREs) to rapid decay by a poorly understood process. AREs have been shown to directly activate deadenylation, decapping, or 3'-to-5' exonucleolytic decay. We demonstrate that enzymes involved in all three of these mRNA decay processes, as well as 5'-to-3' exonucleolytic decay, associate with the protein ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 1991